
Performance Study of Hyper-Threading
Technology on the LUSITANIA Supercomputer

César Gómez-Mart́ın1, José Luis González-Sánchez1, Javier Corral-Garćıa1,
Ángel Bejarano-Borrega1, Javier Lázaro-Jareño1

CénitS (Centro Extremeño de iNvestigación, Innovación Tecnológica y
Supercomputación)

cesar.gomez@cenits.es

joseluis.gonzalez@cenits.es

javier.corral@cenits.es

angel.bejarano@cenits.es

javier.lazaro@cenits.es

Key words:Hyper-Threading, performance, LUSITANIA, supercomputer

Abstract. In this paper Hyper-Threading technology is evaluated on the
LUSITANIA supercomputer. LUSITANIA is a SMP-ccNUMA system com-
posed of two HP Integrity SuperDomes SX2000.
The effects of Intel’s Hyper-Threading Technology on Intel Itanium proce-
ssors are not very clear, in order to understand how this technology affects
the performance of LUSITANIA, several benchmarks have been studied.
Those bechmarks have been carefully chosen to try to demonstrate the per-
formance gain or degradation when running different kind of applications.
The results demonstrate that Hyper-Threading achieve better performance
when the application needs to communicate data among processes or threads,
but, whenever the application is embarrassingly parallel, cache-friendly or
all the floating point units are optimized it is not advisable to enable Hyper-
Threading. We have also empirically study that the sense of the application
will determine whether Hyper-Threading will accelerate or diminish perfor-
mance. Enabling Hyper-Threading or disabling it is not an exact science,
it depends on so many factors that a bechmark study of the problem that
is going to be addressed is highly recommended.

1 Introduction

Hyper-Threading Technology makes a single physical processor appear as two lo-
gical processors; the physical execution resources are shared and the architecture
state is duplicated for the two logical processors. From a software or architec-
ture perspective, this means operating systems and user programs can schedule
processes or threads to logical processors as they would on multiple physical pro-
cessors. From a microarchitecture perspective, this means that instructions from
both logical processors will persist and execute simultaneously on shared execu-
tion resources [5]. The only requirement to take advantage of this technology is to
have symmetric multiprocessing (SMP) support in the operating system. Hyper-
Threading is totally transparent to the operating system and does not need any
kind of configuration as it can be enabled inside the EFI or BIOS [9].

Fig. 1. LUSITANIA

1.1 Hardware Parallelism

Hardware Parallelism follows two basic techniques: Instruction Level Parallelism
(ILP) and Thread/Task Level Parallelism (TLP). Simultaneous Multi-Threading
(SMT) is the technology used by modern processors that combines ILP and TLP
[6].

– Modern processors have tried to increase the number of instruction that can
be executed during one clock cycle, this is called Instruction Level Parallelism
(ILP), i.e. if a instruction tries to increase a value and a different instruction
has to multiply two digits, those instructions could be done together if there
were two free processing units. There are some important points to get better
ILP:
• A big set of execution units is needed in order to distribute all the instruc-

tions.
• It is very important to have a big set of registers to be able to simulta-

neously execute several operations.
Some problems should be avoided to exploit ILP:
• If there are some correlative instructions that need the same execution

unit it is not possible to run them parallely.
• If an operation depends on the result of a previous instruction they have

to be serially executed.
– On the other hand, Thread/Task Level Parallelism (TLP) allows n-core or

multiprocessor systems to concurrently execute several tasks or threads from
one or various programs.

– Hyper-Threading technology is based on Simultaneous Multi-Threading (SMT),
which is a combination of ILP and TLP. SMT dynamically allocates empty
resources between tasks or threads allowing multiple-thread execution along
processors.

Fig. 2. HP Integrity SuperDome SX2000

2 LUSITANIA

LUSITANIA is a SMP-ccNUMA system with 2 HP SuperDomes SX2000 nodes
installed at Extremadura Supercomputing Center (CénitS) in Cáceres, Spain (see
Figure 1). The demanded applications in this Supercomputer are multidisciplinary
and heterogeneous so, it was very important to clarify which was the best confi-
guration to slightly adjust all the parameters that could improve the performance
of the system. One of the first paradox that was addressed was to investigate
whether the effects of Intel Hyper-Threading Technology were good or harmful
when running those applications on LUSITANIA.

2.1 Hardware Configuration

LUSITANIA is the Supercomputer of Extremadura (Spain), it has some of the
biggest shared-memory nodes of Spain and Europe. The solution is based on two
shared-memory HP Integrity SuperDome SX2000 supernodes (see Figure 2):

– They both are equipped with 64 dual-core Intel Itanium2 Montvale processors
running at 1.6GHz with 18 MB cache, 1TB memory (upgradeable) on a single
image and SX2000 chipsets designed to take advantage of Itanium2 Montvale
CPUs [7].

– The Itanium architecture is based on explicit ILP, in which the compiler makes
the decisions about which instructions will execute in parallel. This alternative
approach helps Itanium processors execute up to six instructions per clock
cycle.

– SX2000 chipsets are interconnected via crossbar switches with three indepen-
dent connections to ensure the best performance by using multipathing, ECC
protection and load-balancing.

– The well-balanced architecture of the HP Super-Scalable Processor Chipset
SX2000 makes the Dual-Core Intel Itanium2 Montvale more powerful.

– The system is also designed to derive significantly greater performance from
these existing processors by providing systems with enhanced bandwidth, high
memory capacity and reduced memory latency.

– HP SX2000 Chipset is also built to support Intel Itanium processors with
multithreading for enhanced performance and scalability [7]. Its VLSI compo-
nents consist of a cell controller, a memory buffer, a crossbar switch, a PCI-X
system bus adapter and a PCI-X host bridge. The chipset enhances intercon-
nectivity between processors, memory and I/O cards, providing you with a
high-performance computer system.

– HP Superdome SX2000 consists on 16 cells with interleaved memory for shared
objects or data structures. A portion of memory is taken from cells of the
system (typically all of the cells) and is mixed together in a round robin fashion
of cache-line-size chunks. It has the characteristic that memory accesses take
a uniform amount of time. In other words, it has uniform latency no matter
which processor accesses it.

– The cell controller (CC) maintains a cache-coherent memory system (ccNUMA)
using a directory-based memory controller [8]. The CC’s memory controller is
combined with memory buffers and DIMMs to create four independent memory
systems (quadrants). The memory buffers enable streaming of data between
the CC and DIMMs at 533 MT/s. These memory buffers accelerate access to
memory, enable memory ECC and can buffer several cache lines going both to
and from memory. Up to 32 DIMMs can be controlled by the CC’s memory
controller [7].

2.2 Software Configuration

The following software versions have been used to run all the benchmark tests:

– Suse Linux Enterprise (v.10) is the operating system installed on the Super-
Dome.

– Intel Fortran Compiler (v.11.0.074) applying the O3 level of optimization.
– Intel C/C++ Compiler (v.11.0.074) applying the O3 level of optimization.
– HP-MPI libraries and binaries to compile and run MPI applications (v.02.02.07.00

Linux IA64).
– Intel OpenMP implementation to generate multi-threaded applications.

3 Performance Evaluation

In order to measure the performance (with and without Hyper-Threading) on
one of the SuperDomes, a set of commonly used benchmarks have been used.
High-Performance Linpack (HPL 1.0a) and NAS Parallel Benchmark (NPB3.0-
OMP) are very popular when evaluating Supercomputer performance since they
are meant to exploit the system as much as possible. Furthermore, the choice of
those bechmarks, due to the use of the most commonly used high-performance
programming paradigms (MPI and OpenMP), provides the two more interesting
environments within modern parallel computation techniques that are important
to evaluate:

– HPL-1.0a benchmark uses MPI to communicate different processes through a
message-passing mechanism.

– NPB3.0-OMP is the OpenMP implementation of NPB that takes advantage
on ccNUMA systems like SuperDomes by using a thread model approach.

3.1 High Performance Linpack (HPL 1.0a)

Linpack benchmark is a performance test widely used by High-Performance Com-
puting community. This benchmark is not aimed to measure the general perfor-
mance of a system but it evaluates a very specific performance area by solving a
random dense system of linear equations in double precision (64 bits) arithmetic
[3]. Thus Linpack provides a quite accurate way of knowing the performance of real
applications on a HPC environment. The measurement obtained from Linpack is
the number of floating-point operations per second (FLOPS). The HPL software
is a portable implementation of the High-Performance Linpack Benchmark for
distributed-memory computers, the package requires the availability on your sys-
tem of an implementation of the Message Passing Interface MPI (1.1 compliant).
An implementation of either the Basic Linear Algebra Subprograms BLAS or the
Vector Signal Image Processing Library VSIPL is also needed.

Since HPL users get better benchmark performance by utilizing BLAS from
the Intel Math Kernel Library (Intel MKL), we finally decided to use the Intel
optimized HPL binary directly (mp linpack) on one of the SuperDomes (1 TB
shared RAM).

Calculating the solution requires 2/3n3 + 2n2 floating point operations, where
n is the matrix dimension. The values of n (problem size) are normally between
n = 100 and n = 1000, but, since LUSITANIA’s nodes have 1TB RAM on a single
image a bigger value must be used in order to achieve better performance results:

– The problem size should be the largest to fit in the memory. Each Superdome
has 1 TB RAM (i.e. 125 billions double precision elements).

– Square root of that number is 353553.
– Some memory should be used for Operating System because if the problem

size is too large, it is swapped out, and the performance will degrade. As a
rule of thumb, 80% of the total memory will be a starting point for problem
size (n = 282842).

– Data locality is also a good way of improving performance. Each SuperDome
is configured with 25% interleaved memory so the remaining 75% will be used
to exploit data locality (n = 211286).

– To round down a n = 200000 problem size has been finally set.

To understand the behavior of the HPL Linpack on one of the supernodes,
different simulations, changing the number of working processes, have be run:

– The results in Table 1 and Figure 3 show that there aren’t big improvements
if we enable Hyper-Threading.

– When the number of processes is less than the number of logical processors
the performance is similar.

Processes GFLOPS without HT GFLOPS with HT

36 211.0 210.5
64 368.4 366.3
81 456.0 457.7
128 685.2 686.3
144 274.3 386.3

Table 1. High-Performance Linpack results

Fig. 3. High-Performance Linpack

– Only when the system is overloaded we achieve around 40% performance im-
provement.

– To get the ideal performance 128 processes should be used, i.e. it is not good
to overload the system when running this type of problems

– HPL was compiled using the BLAS library from the Intel Math Kernel Library,
this means that the floating point units were very optimized and didn’t allow
much space for concurrent processes on the same unit.

We can conclude that, in the ideal case, when all the processors are executing
High-Performance Linpack there is an improvement of 1.1 GFLOPs, thus running
Linpack combined with the HP-MPI message passing library and Hyper-Threading
technology exploits better all the hardware resources.

3.2 NAS Parallel Benchmark (NPB 3.0-OMP)

Traditional benchmarks, such as the Linpack benchmark, were generally special-
ized for vector computers and could be inappropriate for highly parallel systems
as they were not designed for automatic software parallelization tools. That was
the reason why NAS Parallel Benchmarks (NPB) were developed in 1991 [1]. NPB
focuses on computational fluid dynamics and related aeroscience disciplines whose

studies and problems are traditionally achieved using High-Performance Compu-
ters.

There are currently different versions of the benchmarks, but the NPB 3.0
version has an OpenMP implementation which is appropriate for ccNUMA shared
memory supercomputers such as LUSITANIA [4]. OpenMP is a set of compiler
directives that extend Fortran, C and C++ to express shared memory parallelism.

NPB contains eight benchmark kernels (MultiGrid, Conjugate Gradient, Fast
Fourier Transform, Integer Sort, Embarrassingly Parallel, Block Tridiagonal, Scalar
Pentadiagonal and Lower-Upper symmetric Gauss-Seidel). Four of them are very
interesting because they are close to what researchers usually execute on LUSI-
TANIA. The Million Operations Per Second (MOPS) that one SuperDome can
develop with or without Hyper-Threading will be measured. Each kernel has three
problem sizes (classes A, B and C). In order to use an up-to-date problem size class
C has been chosen because it is suitable for evaluating modern supercomputers
[2].

Fast Fourier Transform: This benchmark contains a kernel of a 3-D fast Fourier
Transform (FFT)-based spectral method. FT performs three one-dimensional (1-
D) FFTs, one for each dimension. It is a rigorous test of long-distance commu-
nication performance. The size for the Class C problem of the FT benchmark is
5123.

Threads MOPS without HT MOPS with HT

36 29780.29 29195.41
64 48249.32 47119.27
81 52654.43 51265.21
100 58083.44 55094.50
128 61852.50 66353.47
144 38097.25 46065.66
169 37318.60 47670.45
196 36430.32 47253.03
225 36468.69 45490.30
256 37794.78 43818.99

Table 2. NPB Fast Fourier Transform results

After running several executions using different number of threads (see Table
2 and Figure 4), the results show that:

– When the number of threads is less than the number of available processors
there is better performance if HT is disabled.

– When we use all the processors HT improve the performance more than 7%.
– Whenever the system is overloaded the improvement of HT is between 15%

and 29%.

Fig. 4. NPB Fast Fourier Transform

The design of the FT benchmark requires using intensive floating point operations,
but it also needs communication among processes. So it is advisable to use HT in
the ideal case (128 threads running on 128 processors) and also when the system
is overloaded, but it is not good if all the resources are not going to be used.

Embarrassingly Parallel: EP benchmark generates pairs of Gaussian random
deviates according to a specific scheme. The goal is to establish the reference point
for peak performance of a given platform. It provides an estimate of the upper
achievable limits for floating point performance without significant interprocessor
communication. The size for the Class C problem of the EP benchmark is 232.

Threads MOPS without HT MOPS with HT

36 1816.52 1820.17
64 3210.63 3175.16
81 4048.68 3980.22
100 5023.44 4868.53
128 6008.92 5959.08
144 3589.57 4590.48
169 4229.76 5364.78
196 4563.59 5407.18
225 4347.38 5646.47
256 3763.56 4839.71

Table 3. NPB Embarrassingly Parallel results

From the observation of the results (see Table 3 and Figure 5) there are im-
portant facts that have to be carefully studied:

Fig. 5. NPB Embarrassingly Parallel

– In these kind of embarrassingly parallel applications it is not a good idea to use
HT Technology because it always diminish the performance when the system
holds more threads than the number of availables cores.

– It is only advisable to enable HT in the not ideal cases in which the system
has to deal with more than one thread per core.

– HT disabled provides 1%-3% MOPS gain.

This problem is used in all the typical Monte Carlo simulations, it is embarrassingly
parallel, that means that threads don’t need to communicate very often, they
calculate arithmetic operations. These intensive floating point operations exploit
all the processor resources most of the time, so it is better to disable HT for this
type of Monte Carlo applications.

Block Tridiagonal: The Block Tridiagonal kernel is a simulated CFD application
that uses an implicit algorithm to solve 3-dimensional (3-D) compressible Navier-
Stokes equations. The finite differences solution to the problem is based on an
Alternating Direction Implicit (ADI) approximate factorization that decouples the
x, y and z dimensions. The resulting systems are Block-Tridiagonal of 5x5 blocks
and are solved sequentially along each dimension. The size for the Class C problem
of the BT benchmark is 1623.

The OpenMP BT benchmark was optimized to use smaller arrays to reduce the
memory usage and to improve the cache performance, this is good for ccNUMA
systems because, in the case of the SuperDomes, each processor has 18MB cache
size. The results show that it is not a good idea to enable HT to execute cache-
friendly applications.

After running BT benchmark it can be observed (Table 4 and Figure 6) that:

– It is unwise to use HT for cache-friendly applications.
– Unlike the other FT and EP benchmarks, the best performance is obtained by

using 81 threads instead of 128

Threads MOPS without HT MOPS with HT

36 29194.51 28448.64
64 51415.60 42080.26
81 71627.49 46754.70
100 59387.02 46164.66
128 59781.11 52312.25
144 40925.23 24923.54
169 46653.48 36100.99
196 48003.63 36292.36
225 45660.17 48648.60
256 43382.45 45569.99

Table 4. NPB Block Tridiagonal results

Fig. 6. NPB Block Tridiagonal

– When the threads are able to exploit all the cache locality the number of
MOPS increases.

Conjugate Gradient: This kernel uses a Conjugate Gradient method to compute
an approximation to the smallest eigenvalue of a large, sparse, unstructured matrix.
It tests irregular long distance communications employing unstructured matrix
vector multiplication. The size for the Class C problem of the CG benchmark is
150000.

The results (Table 5 and Figure 7) of this type of benchmark show that:

– 100 threads is the configuration with the highest MOPS rate.
– In the ideal configuration HT it is not advisable (1% loss aprox.).
– In the other benchmarks HT got better results when the system was over-

loaded, but in CG the results are better without HT.

Threads MOPS without HT MOPS with HT

36 4592.96 5044.12
64 10165.17 10529.92
81 17070.85 16470.47
100 20865.44 20664.16
128 17628.43 19970.67
144 13841.09 5786.25
169 12870.31 6296.99
196 12114.52 6143.35
225 11523.90 5928.27
256 11402.77 5440.40

Table 5. NPB Conjugate Gradient results

Fig. 7. NPB Conjugate Gradient

This kernel tests unstructured grid computations and communications by using a
matrix with randomly generated locations of entries. The combination of compu-
tation an communication among threads implies that performance without HT is
better in most of the cases.

4 Conclusions

This study empirically demonstrate and prove that the sense of the application
will determine whether Hyper-Threading will accelerate or diminish performance
on the HP Integrity SuperDome SX2000. Enabling Hyper-Threading or disabling
it is not an exact science, it depends on so many factors that a bechmark study of
the problem that is going to be addressed is highly recommended. Nevertheless,
after running the benchmarks there are some conclusions and tips that could help
system administrators and programmers regarding the use of Hyper-Threading
technology on LUSITANIA. Hyper-Threading is recommended when:

– Threads or processes have to communicate with each other very often.
– An MPI library is used to communicate processes.
– The application doesn’t use all the processing units leaving space for a different

thread or process.
– Poor-optimized math libraries are used, if it is not optimized by the software

then it can be optimized by the hardware.
– There are a lot of cache misses.

Hyper-Threading is not recommended when:

– The application is embarrassingly parallel, i.e. there is almost no communica-
tion between threads and processes.

– Intensive floating point operations exploit all the processor resources and there
is no more room for a different operation.

– A cache-friendly application is executed.
– The math library is already optimized and parallelized.

References

1. D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi, S.
Fineberg, P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrishnan,
S. Weeratunga ”The NAS Parallel Benchmarks” RNR Technical Report RNR-94-007
March 1994, (1994).

2. David Bailey, Tim Harris, William Saphir,Rob van der Wijngaart, Alex Woo, Maurice
Yarrow ”The NAS Parallel Benchmarks 2.0” Report NAS-95-020, (1995).

3. Jack J. Dongarra, Piotr Luszczek, Antoine Petitet ”The LINPACK benchmark: Past,
present, and future.” Concurrency and Computation: Practice and Experience 15,
(2003).

4. H. Jin, M. Frumkin, J. Yan ”The OpenMP Implementation of NAS Parallel Bench-
marks and Its Performance” NAS Technical Report NAS-99-011, (1999).

5. Deborah T. Marr, Frank Binns, David L. Hill, Glenn Hinton, David A. Koufaty, J.
Alan Miller, Michael Upton ”Hyper-Threading Technology Architecture and Microar-
chitecture” Intel Technology Journal, volume 6, pp. 4-14, (2002).

6. Nicholas Mitchel, Larry Carter, Jeanne Ferrante, Dean Tullsen ”ILP versus TLP on
SMT” Proceedings Supercomputing ’99, (1999).

7. Hewlett Packard ”HP Super-Scalable Processor Chipset sx2000”, (2007).
8. Hewlett Packard ”ccNUMA White Paper”, (2003).
9. Hewlett Packard ”Dynamic logical processors for Hyper-Threading on HP-UX 11i v3”,

(2007).

